yves has the right idea, I think. To move the pawn or the bishop is clearly a mistake, the queen sac goes nowhere, and the rook sac ends in perpetual check.
1…Rd3 wins. for example if 2.rd6 then qh4 mating. btw,an amusing yet wrong calculation if White is to play is 1.Bd5 Qd5, 2.Rd6 Qd6, 3.Qh5 Kh5, 4.g4 stalemate. But of course, Black doesnt have to take on h5…
Oops, I realized that in my main line, white has 3. Bf5 threatening mates on both h7 and g6. The only defense I see is g4+, but after Bxg4 or Kxg4 I think it is a draw. I don’t see anything better for black here.
1…Rd3 wins. for example 2.Rd6 Qh4 mating. If it was White to play, then there is the interesting 1.Bd5 Qd5,2.Rd6 Qd6, 3.Qh5 Kh5, 4.g4 stalemate!! although, Black doesnt have to take qh5…
I’m going with Qb2. White has no checks, so Black can afford a move. Now black threatens Rh2+ and Qe2+ with quick mate. I can’t see a defence. eg: 1. Qb2 2. Kg4 Rd4+ 3. Kh3 Rh4+! 4. gxh4 g4+! 5. Kxg4 Qg2+ 6. Kf5 Qf3 mate
I agree with the numerous people pointing out Rd3, but I wanted to respond to point out a common fallacy in our analysis (mine included).
Jim Lin’s analysis points out that 1. … Qd3 2. Rxd6 Qxd6 wins the exchange for black
but then he stops with the assumption that this material advantage is good enough to win.
In truth, this leads to a draw because Black has given up the key square f6 that White desperately needed.
3. Qf6+ Kh7 since Kh5 allows the surprising Bf7 mate 4. Bf5+ Kg8 5. Be6+ where Black has to allow the repetition draw with Kh7 or sack his Q.
The point being we need to extend our analysis to definitive end and not just “and Black wins”. I’ve seen this point made before but I always think it bares repeating.
White may have better then a draw with the Black king trapped but if so, I don’t see it.
NOTE: I use Jim Lin’s analysis for this post as an example, not to single him out. As I said at the beginning, I find myself falling into this trap quite often too.
1.Rd3 wins
1 .. Rd2
2 g4
Works?
This was a draw. I saw it live.
perhaps Rh3+, then Qh5+ and Qxg3. Shortly after that black takes the white rook back, gaining a pawn. Still the draw seems inevitable IMHO.
Qh4+… gh4… Rh2 MATE.
Um….how about:
1 …g4+
2. Kh4 Rh2#
yves has the right idea, I think. To move the pawn or the bishop is clearly a mistake, the queen sac goes nowhere, and the rook sac ends in perpetual check.
Kausahal Khandar: Rh2 is not mate; Kg4
Brother Al: 2. bxg4
The best I could find was Rh2 check
Kh2 Qh4+ Kg1 Qg3+ Kf1 Qd3 + with a perpetual
1 ..Qh4+
2 gxh4 Rh2+
3 Kg4 Rxh4+
4 Kf5 Rf4+ mate
Black wins:
1. .. Qe5
@ Anon 10:45 White need not go to Kf5 but to Kf3 on move 4 of your variation when there is no longer mate.
Rf2 (moves Q from f file) Qa1
threatening Qh1 mate looks promising
rd3…simple but effective
No one got this right so far.
I believe the winner is Qe3.
1…Rd3 wins. for example if 2.rd6 then qh4 mating.
btw,an amusing yet wrong calculation if White is to play is 1.Bd5 Qd5, 2.Rd6 Qd6, 3.Qh5 Kh5, 4.g4 stalemate. But of course, Black doesnt have to take on h5…
The simple 1…Rd3 wins.
Sometimes the solution is so simple you overlook it.
Pharaoh
I think 1. … Qd3 wins.
There is no good way to defend the g3 pawn, while:
2. Kg4 Qxg3+
3. Kf5 Qf4#
So the only defense is
2. Rxd6 Qxd6 wins the exchange for black.
I think that 1. … Qe3 loses because
2. Rxd6 Rxd6
3. Qf8+ Kh7 (3. … Kh5 4. Bf7#)
4. Qxd6 and white is up a piece.
Oops, I realized that in my main line, white has 3. Bf5 threatening mates on both h7 and g6. The only defense I see is g4+, but after Bxg4 or Kxg4 I think it is a draw. I don’t see anything better for black here.
I think Qb2 wins.
GM-norm?
I think Qb2 wins.
GM-norm?
1…Rd3 wins. for example 2.Rd6 Qh4 mating.
If it was White to play, then there is the interesting 1.Bd5 Qd5,2.Rd6 Qd6, 3.Qh5 Kh5, 4.g4 stalemate!! although, Black doesnt have to take qh5…
I’m going with Qb2. White has no checks, so Black can afford a move.
Now black threatens Rh2+ and Qe2+ with quick mate. I can’t see a defence.
eg:
1. Qb2
2. Kg4 Rd4+
3. Kh3 Rh4+!
4. gxh4 g4+!
5. Kxg4 Qg2+
6. Kf5 Qf3 mate
Qh4+!
I agree with the numerous people pointing out Rd3, but I wanted to respond to point out a common fallacy in our analysis (mine included).
Jim Lin’s analysis points out that
1. … Qd3
2. Rxd6 Qxd6 wins the exchange for black
but then he stops with the assumption that this material advantage is good enough to win.
In truth, this leads to a draw because Black has given up the key square f6 that White desperately needed.
3. Qf6+ Kh7 since Kh5 allows the surprising Bf7 mate
4. Bf5+ Kg8
5. Be6+ where Black has to allow the repetition draw with Kh7 or sack his Q.
The point being we need to extend our analysis to definitive end and not just “and Black wins”. I’ve seen this point made before but I always think it bares repeating.
White may have better then a draw with the Black king trapped but if so, I don’t see it.
NOTE: I use Jim Lin’s analysis for this post as an example, not to single him out. As I said at the beginning, I find myself falling into this trap quite often too.
So, Rd3 is the solution? A rather disappointing one, to say the least.
And if not that, then what?