# | Name | Rating | +/− | Games | Age |
1 | Carlsen | 2835.0 | 0.0 | 0 | 21 (30.11.1990) |
2 | Aronian | 2823.2 | −1.8 | 6 | 29 (06.10.1982) |
3 | Kramnik | 2802.8 | +1.8 | 6 | 36 (25.06.1975) |
4 | Radjabov | 2784.0 | 0.0 | 0 | 25 (12.03.1987) |
5 | Anand | 2783.8 | −7.2 | 8 | 42 (11.12.1969) |
6 | Nakamura | 2782.6 | +7.6 | 14 | 24 (09.12.1987) |
7 | Karjakin | 2779.0 | 0.0 | 0 | 22 (12.01.1990) |
8 | Caruana | 2772.0 | +2.0 | 14 | 19 (30.07.1992) |
9 | Morozevich | 2769.0 | 0.0 | 0 | 34 (18.07.1977) |
10 | Ivanchuk | 2767.4 | +3.4 | 10 | 43 (18.03.1969) |
11 | Grischuk | 2761.0 | 0.0 | 0 | 28 (31.10.1983) |
12 | Topalov | 2752.0 | 0.0 | 0 | 37 (15.03.1975) |
13 | Kamsky | 2743.8 | +2.8 | 11 | 37 (02.06.1974) |
14 | Wang Hao | 2741.7 | +3.7 | 8 | 22 (04.08.1989) |
15 | Svidler | 2741.0 | 0.0 | 0 | 35 (17.06.1976) |
16 | Tomashevsky | 2738.0 | 0.0 | 0 | 24 (01.07.1987) |
17 | Gashimov | 2737.0 | 0.0 | 0 | 25 (24.07.1986) |
18 | Adams | 2736.7 | +8.7 | 5 | 40 (17.11.1971) |
19 | Jakovenko | 2736.0 | 0.0 | 0 | 28 (28.06.1983) |
20 | Gelfand | 2734.2 | +7.2 | 8 | 43 (24.06.1968) |
21 | Bologan | 2732.4 | +16.4 | 9 | 40 (14.12.1971) |
22 | Leko | 2729.7 | +6.7 | 7 | 32 (08.09.1979) |
23 | Ponomariov | 2726.0 | 0.0 | 0 | 28 (11.10.1983) |
24 | Mamedyarov | 2726.0 | 0.0 | 0 | 27 (12.04.1985) |
25 | Dominguez | 2725.0 | 0.0 | 10 | 28 (23.09.1983) |
26 | Jobava | 2722.1 | +1.1 | 7 | 28 (26.11.1983) |
27 | Nepomniachtchi | 2717.6 | +1.6 | 10 | 21 (14.07.1990) |
28 | Sasikiran | 2717.5 | −2.5 | 4 | 31 (07.01.1981) |
29 | Moiseenko | 2717.5 | +6.5 | 2 | 32 (17.05.1980) |
30 | Wojtaszek | 2717.0 | 0.0 | 0 | 25 (13.01.1987) |
31 | Riazantsev | 2716.3 | +2.3 | 4 | 26 (12.09.1985) |
32 | Fressinet | 2715.0 | 0.0 | 0 | 30 (01.11.1981) |
33 | Almasi | 2713.0 | 0.0 | 0 | 35 (29.08.1976) |
34 | Malakhov | 2712.0 | 0.0 | 0 | 31 (27.11.1980) |
35 | Bruzon | 2711.0 | 0.0 | 0 | 30 (02.05.1982) |
36 | Polgar, Judit | 2709.0 | 0.0 | 0 | 35 (23.07.1976) |
37 | McShane | 2708.2 | +2.2 | 1 | 28 (07.01.1984) |
38 | Inarkiev | 2707.0 | 0.0 | 0 | 26 (09.12.1985) |
39 | Navara | 2705.5 | −0.5 | 12 | 27 (27.03.1985) |
40 | Volokitin | 2704.0 | 0.0 | 0 | 25 (18.06.1986) |
41 | Short | 2703.7 | −1.3 | 5 | 46 (01.06.1965) |
42 | Vitiugov | 2703.0 | 0.0 | 0 | 25 (04.02.1987) |
43 | Shirov | 2700.5 | +2.5 | 1 | 39 (04.07.1972) |
44 | Andreikin | 2700.0 | 0.0 | 0 | 22 (05.02.1990) |
Source: 2700chess.com
Chess Daily News from Susan Polgar
ELO rating, while useful, has its own limitations. For one, from a pure statistical view point, it cannot give confidence numbers on the outcome of a game between say Carlsen and Kramnik.
Also, because matches and tournaments are played so differently (with tons of seconds, months of analysis, etc for matches), the outcomes, when mixed in with each other, creates a polluted mix.
As an analogy, if half the year is really hot, and the other half is really cold, on the average, the temperature is in a comfortable range. The point is, you can’t take numbers from different ranges and mix them up — if you do, the result is not sensible.
On the other hand, an ELO rating is better than no rating system at all. Too many times in other areas of life and work, the weak gets the better deal by talking smooth, or appearing pretty.
But in terms of a scientific measure, it would be nice if there was a better predictor — amongst relative equals. We know the top 6 will likely win against a high 2600, but how will they perform against each other? In a tournament of equals (no Navaras), or in a 4-game match, or in a 12-game match? ELO doesn’t help us here.